top of page

Filters

Selected filters

Studies: | Locations: 

Selected study

Study title

Authors

Abstract: 

Project:
Global climate model:
Regional climate model:
Forcing scenario:
Downscaling method:
Simulation engine:
Typology:
Location:
Pin
Author year
Location
Project
GCM
RCM
Scenario
Downscaling
Engine
DOI
Richter2023
Germany
CMIP6
EC-Earth3
-
SSP5-8.5
Future Weather Generator
EnergyPlus
https://doi.org/10.3390/app132212478
Arima2023
Japan
CMIP3, CMIP5
MIROC6h, MRI-ESM2-0
-
RCP 4.5, RCP 8.5, A2, A1B
CCWorldWeatherGen, WeatherShift™, Meteonorm 8, Extended AMeDAS (EA), NIES
THERB for HAM
https://doi.org/10.1051/e3sconf/202339605014
Escandón2023
Spain
HadCM3
HadCM3
-
RCP 8.5, A2
Meteonorm, CCWorldWeatherGen
EnergyPlus
https://doi.org/10.3390/buildings13092385
Rodrigues2023
Portugal
CMIP6
EC-Earth3
-
SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5
Morphing
EnergyPlus
https://doi.org/10.1016/j.buildenv.2023.110104
Sayadi2022
Sweden
CORDEX, CMIP5
-
REMO2015
RCP 8.5
RCM, statistical
IDA ICE
https://doi.org/10.1016/j.enbuild.2022.111960
DAgostino2022
Europe
CMIP5
14 different
-
RCP 8.5
WeatherShift™
EnergyPlus
https://doi.org/10.1016/j.energy.2021.122479
Ma2022
Australia
CMIP5
CSIRO
-
RCP 8.5
Morphing
EnergyPlus
https://doi.org/10.3390/buildings12081275
Martins2022
Iberian Peninsula
CMIP5
HadCM3
WRF
RCP 8.5
Morphing
EnergyPlus
https://doi.org/10.1016/j.jobe.2022.105598
Jafarpur2021
Canada
CMIP5
14 different
-
RCP 8.5
WeatherShift™
EnergyPlus
https://doi.org/10.1016/j.jobe.2021.102725
Zou2021
China
CMIP5
GISS-E2-R
-
RCP2.6, RCP4.5, RCP6.0, RCP8.5
Morphing
EnergyPlus
https://doi.org/10.1016/j.buildenv.2021.107663
Nguyena2021
Southeast Asia
CMIP5
14 different
-
RCP4.5, RCP8.5
WeatherShift™
EnergyPlus
https://doi.org/10.1016/j.jobe.2020.102089
Tsoka2021
Greece
CMIP5
HadGEM2
RegCM4
RCP4.5
Meteonorm
EnergyPlus
https://doi.org/10.3390/en14185799
Farahani2021
Finland
CMIP5
28 different
-
RCP 4.5
Statistical
IDA ICE
https://doi.org/10.3390/app11093972
Tootkaboni2021
Rome
CORDEX, CMIP5
MPI-ESM-LR
REMO2015
RCP8.5
CCWorldWeatherGen, RCM, WeatherShift, Meteonorm
EnergyPlus
https://doi.org/10.3390/cli9020037
Yang2021
Europe
CORDEX, CMIP5
5 different
RCA4
RCP2.6, RCP4.5, RCP8.5
RCM
Matlab/Simulink
https://doi.org/10.1088/1742-6596/2069/1/012069
Tootkaboni2021a
Italy
CMIP5
14 different
-
RCP4.5, RCP8.5
WeatherShift™
EnergyPlus
https://doi.org/10.1016/j.egyr.2021.04.012
BravoDias2020
Iberia
CMIP3, CMIP5
HadCM3
WRF
A2
CCWorldWeatherGen, Morphing
EnergyPlus
https://doi.org/10.1016/j.enbuild.2019.109556
Liu2020
Hong Kong
CMIP5
24 different
-
RCP2.6, RCP4.5, RCP6.0, RCP8.5
Morphing
EnergyPlus
https://doi.org/10.1016/j.enbuild.2019.109696
Hosseini2020
Montreal international airport
CMIP5
GFDL-ESM2
-
RCP2.6, RCP4.5, RCP6.0, RCP8.5
Machine Learning
EnergyPlus
https://doi.org/10.1016/j.enbuild.2020.110543
Machard2020
Paris
CORDEX, CMIP5
6 different
11 different GCM-RCM combinations
RCP4.5, RCP8.5
RCM
EnergyPlus
https://doi.org/10.3390/en13133424
Ciancio2020
Europe
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.1016/j.scs.2020.102213
Rodriguez2020
Spain
CMIP3
HadCM3
-
A1F1, A2, B1, B2
Weather Morph
EnergyPlus
https://doi.org/10.3390/en13236188
Mangan2020
Turkey
CMIP3
-
-
A2
Meteonorm
EnergyPlus
https://doi.org/10.1080/23311916.2020.1714112
Picard2020
North America
CMIP3,CMIP5
1 and 14 different
-
A2, RCP4.5, RCP8.5
CCWorldWeatherGen, WeatherShift
EnergyPlus
https://doi.org/10.1016/j.enbuild.2020.110251
Rodrigues2020
Mediterranean
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.1016/j.apenergy.2019.114110
Bamdad2020
Australia
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.1016/j.enbuild.2020.110610
Farah2019
Australia
CMIP5
-
-
RCP4.5
Time series analysis
TRNSYS
https://doi.org/10.1016/j.enbuild.2018.11.045
Dino2019
Turkey
CMIP5
14 different
-
RCP8.5
WeatherShift
EnergyPlus
https://doi.org/10.1016/j.renene.2019.03.150
Rouault2019
Chile
CMIP5
MIROC-ESM,IPSL-CM5A,CCSM4
-
RCP4.5, RCP8.5
Meteonorm
ISO 13790:2008
https://doi.org/10.3390/su11247068
Nematchoua2019
India Ocean
CMIP3
18 different
-
A2, A1B, B1
Meteonorm
EnergyPlus
https://doi.org/10.1016/j.scs.2018.10.031
Moazami2019
Geneva
CORDEX, CMIP5, CMIP3
4 different
RCA4
A2, RCP4.5, RCP8.5
CCWorldWeatherGen, WeatherShift™, Meteonorm, RCM
EnergyPlus
https://doi.org/10.1016/j.apenergy.2019.01.085
Silvero2019
Paraguay
CORDEX, CMIP5
ECMWF-ERAINT, HadGEM2-ES
RCA4
RCP4.5, RCP8.5
RCM, Statistical
EnergyPlus
https://doi.org/10.1007/s12273-019-0532-6
Troup2019
USA
CMIP5
14 different
-
RCP4.5, RCP8.5
WeatherShift™
EnergyPlus
https://doi.org/10.1016/j.apenergy.2019.113821
Flores-Larsen2019
Argentina
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.1016/j.enbuild.2018.12.015
Dodoo2019
Ghana
CMIP3
-
-
A1B
Meteonorm
IDA ICE
https://doi.org/10.3390/buildings9100215
Huang2019
Taiwan
CMIP5
NorESM1-M
-
RCP2.6, RCP4.5, RCP8.5
Morphing
EnergyPlus
https://doi.org/10.1051/e3sconf/201911106056
Zhai2019
USA
CMIP5
CCSM4, FIO-ESMv1.0, HadGEM2-ES
-
RCP2.6, RCP4.5, RCP6.0, RCP8.5
Morphing
EnergyPlus
https://doi.org/10.1016/j.scs.2018.10.043
Baniassadi2019
USA
CMIP5
CESM1
WRF
RCP 8.5
RCM
EnergyPlus
https://doi.org/10.1088/1748-9326/ab28ba
Pouriya2019
Toronto
CMIP3, CMIP5
HadCM3
HRM3
A2, RCP8.5
CCWorldWeatherGen, RCM, WeatherShift™
NaN
https://doi.org/10.1088/1757-899X/609/7/072037
Zheng2019
USA
CMIP3
HadCM3
-
A1F1, A2
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.1016/j.energy.2019.04.052
Triana2018
Brazil
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.1016/j.enbuild.2017.11.003
Cellura2018
Europe
CMIP5
24 different
-
RCP2.6, RCP4.5, RCP6.0, RCP8.5
Morphing
TRNSYS
https://doi.org/10.1016/j.esd.2018.05.001
Perez-Andreu2018
Valencia
CMIP5
CNRM-CM5, MPI-ESM-LR
-
RCP8.5
Morphing
TRNSYS
https://doi.org/10.1016/j.energy.2018.09.015
Hosseini2018
Montreal
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.1016/j.jobe.2018.02.001
Suarez2018
Córdoba
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.3390/su10082914
Vasaturo2018
Netherlands
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.1007/s12273-018-0470-8
Andric2017
Europe and Canada
CMIP3
HadCM3
-
low, med, high
CCWorldWeatherGen
Matlab/Simulink
https://doi.org/10.1016/j.enbuild.2017.05.047
Shen2017
USA
CMIP3
HadCM3
-
A1F1, A2
Morphing
EnergyPlus
https://doi.org/10.1016/j.enbuild.2016.09.028
Lim2017
Asia
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.3390/su9112039
Pierangioli2017
Firenze
CORDEX, CMIP5
-
COSMO-CLM
RCP8.5
Morphing
EnergyPlus
https://doi.org/10.1007/s12273-016-0346-8
Sabunas2017
Lithuania
CMIP5
5 different
-
RCP2.6, RCP8.5
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.1016/j.egypro.2017.09.020
Filippin2017
Argentina
CMIP5
MRI-CGCM3
-
RCP4.5
-
SIMEDIF
https://doi.org/10.1016/j.renene.2016.09.064
Hamdy2017
Netherlands
CMIP3
5 different
8 different
KNMI'06 G+, KNMI'06 W+
Hybrid
IDA ICE
https://doi.org/10.1016/j.buildenv.2017.06.031
Palme2017
Ecuador
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
TRNSYS
https://doi.org/10.1007/978-3-319-30746-6_31
Wang2017
USA
CMIP5, CMIP3
CESM1(CAM5), HadCM3
-
RCP2.6, RCP4.5, RCP8.5, A2
CCWorldWeatherGen, Morphing
EnergyPlus
https://doi.org/10.1016/j.enbuild.2017.01.007
Erba2017
Milano
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.1016/j.egypro.2017.09.561
Nik2017
Sweden
CMIP3
CNRM-CM3, ECHAM5
RCA3
A1B
RCM
Matlab/Simulink
https://doi.org/10.1016/j.egypro.2017.09.686
Huang2016
Taipei
CMIP3
MIROC3.2-M
-
A2, A1B, B1
Morphing
EnergyPlus
https://doi.org/10.1016/j.apenergy.2015.11.008
Waddicor2016
Turin city
CMIP3
-
-
A2, B1
Morphing
IDA ICE
https://doi.org/10.1016/j.buildenv.2016.03.003
Dodoo2016
Växjö
CMIP5
HadGEM2
-
RCP4.5, RCP8.5
Morphing
VIP-Energy
https://doi.org/10.1016/j.energy.2015.12.086
Pagliano2016
Italy
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.1016/j.enbuild.2016.05.092
Huang2016
USA
CMIP3
15 different
-
A2, A1B, B1
Morphing
EnergyPlus
https://doi.org/10.1016/j.energy.2016.05.118
Nik2016
Sweden
CMIP3
5 different
RCA3
A1B3
RCM
Matlab/Simulink
https://doi.org/10.1016/j.enbuild.2016.03.044
Khalfan2016
Qatar
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
IESVE
https://doi.org/10.3390/su8020139
Arima2016
Tokyo
CMIP5
MIROC4h
WRF
RCP4.5
RCM
TRNSYS
https://doi.org/10.1016/j.enbuild.2015.08.019
Invidiata2016
Brasilian cities
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.1016/j.enbuild.2016.07.067
Rubio-Bellido2016
Chilean cities
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
Excel VBA
https://doi.org/10.1016/j.energy.2016.08.021
Shibuya2016
Japan
CMIP3
MRI-CGCM2
RCM20
A2
RCM
TAS
https://doi.org/10.1016/j.enbuild.2016.02.023
Zhu2016
Shanghai
CMIP5
HadGEM2-CC
-
RCP4.5
Morphing
EnergyPlus
https://doi.org/10.1016/j.enbuild.2015.12.020
Karimpour2015
Adelaide
CMIP3
CSIRO-Mk3.0
-
A1B, B1
Morphing
AccuRate
https://doi.org/10.1016/j.enbuild.2014.10.064
Jylha2015
Finland
CMIP3
19 different
-
A2, A1B, B1
Morphing
IDA ICE
https://doi.org/10.1016/j.dib.2015.04.026
Kikumoto2015
Japan
CMIP5
MIROC4h
WRF
RCP4.5
RCM
TRNSYS
https://doi.org/10.1016/j.scs.2014.08.007
Wang2014
US cities
CMIP3
HadCM3
-
A1F1, A2, B1
Morphing
EnergyPlus
https://doi.org/10.1016/j.enbuild.2014.07.034
Berger2014
Wien
CMIP3
-
REMO-UBA
A1B
RCM
TAS
https://doi.org/10.1016/j.enbuild.2014.03.084
Dirks2015
USA
CMIP3
CASCaDe
-
A2
Statistical
EnergyPlus
https://doi.org/10.1016/j.energy.2014.08.081
Peng2014
Sheffield
CMIP3
HadCM3
-
A2
CCWeatherGen
EnergyPlus
https://doi.org/10.1109/IGBSG.2014.6835172
Daly2014
Australia
CMIP3
HadCM3
-
A2
CCWorldWeatherGen
EnergyPlus
https://doi.org/10.1016/j.buildenv.2014.01.008
Lee2013
England
CMIP3
HadCM3Q0
HadRM3Q0
A1B
RCM
EnergyPlus
https://doi.org/10.1177/0143624412439485
Xiang2013
China
CMIP3
MIROC3.2-H
-
A1B, B1
Statistical
TRNSYS
https://doi.org/10.1007/s11708-013-0261-y
Asimakopoulos2012
Greece
CMIP3
-
-
A2, B2, A1B
RCM
TRNSYS
https://doi.org/10.1016/j.enbuild.2012.02.043
Eames2012
England
CMIP3
HadCM3
-
low, med, high
Morphing
NaN
https://doi.org/10.1016/j.buildenv.2012.03.006
Ouedraogo2012
Burkina Faso
CMIP3
HadCM3
-
A1, A2, B1, B2
Statistical
IESVE
https://doi.org/10.1016/j.buildenv.2011.10.003
Wan2012
China
CMIP3
MIROC3.2-H
-
A1B, B1
-
DOE-2
https://doi.org/10.1016/j.apenergy.2011.11.048
Guan2012
Australia
CMIP3
-
-
low, med, high
Statistical
EnergyPlus
https://doi.org/10.1016/j.buildenv.2011.11.013
Chan2011
Hong Kong
CMIP3
6 different
-
A1B, B1
Morphing
EnergyPlus
https://doi.org/10.1016/j.enbuild.2011.07.003
Wang2010
Australia
CMIP3
CSIRO-Mk3.0
-
A1B, A1F1, A1T
Morphing
AccuRate
https://doi.org/10.1016/j.buildenv.2010.01.022
Jentsch2008
Southampton
CMIP3
UKCIP02
-
med, high
Morphing
TRNSYS
https://doi.org/10.1016/j.enbuild.2008.06.005
Crawley2007
USA
CMIP3
HadCM3
-
A1F1, A2, B1, B2
-
EnergyPlus
https://doi.org/10.1080/19401490802182079
bottom of page