top of page
Filters
Selected filters
Studies: 88 | Locations: 216
Selected study
Study title
Authors
Abstract:
Project: | |
Global climate model: | |
Regional climate model: | |
Forcing scenario: | |
Downscaling method: | |
Simulation engine: | |
Typology: | |
Location: |
Pin | Author year | Location | Project | GCM | RCM | Scenario | Downscaling | Engine | DOI |
---|---|---|---|---|---|---|---|---|---|
Richter2023 | Germany | CMIP6 | EC-Earth3 | - | SSP5-8.5 | Future Weather Generator | EnergyPlus | https://doi.org/10.3390/app132212478 | |
Arima2023 | Japan | CMIP3, CMIP5 | MIROC6h, MRI-ESM2-0 | - | RCP 4.5, RCP 8.5, A2, A1B | CCWorldWeatherGen, WeatherShift™, Meteonorm 8, Extended AMeDAS (EA), NIES | THERB for HAM | https://doi.org/10.1051/e3sconf/202339605014 | |
Escandón2023 | Spain | HadCM3 | HadCM3 | - | RCP 8.5, A2 | Meteonorm, CCWorldWeatherGen | EnergyPlus | https://doi.org/10.3390/buildings13092385 | |
Rodrigues2023 | Portugal | CMIP6 | EC-Earth3 | - | SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5 | Morphing | EnergyPlus | https://doi.org/10.1016/j.buildenv.2023.110104 | |
Sayadi2022 | Sweden | CORDEX, CMIP5 | - | REMO2015 | RCP 8.5 | RCM, statistical | IDA ICE | https://doi.org/10.1016/j.enbuild.2022.111960 | |
DAgostino2022 | Europe | CMIP5 | 14 different | - | RCP 8.5 | WeatherShift™ | EnergyPlus | https://doi.org/10.1016/j.energy.2021.122479 | |
Ma2022 | Australia | CMIP5 | CSIRO | - | RCP 8.5 | Morphing | EnergyPlus | https://doi.org/10.3390/buildings12081275 | |
Martins2022 | Iberian Peninsula | CMIP5 | HadCM3 | WRF | RCP 8.5 | Morphing | EnergyPlus | https://doi.org/10.1016/j.jobe.2022.105598 | |
Jafarpur2021 | Canada | CMIP5 | 14 different | - | RCP 8.5 | WeatherShift™ | EnergyPlus | https://doi.org/10.1016/j.jobe.2021.102725 | |
Zou2021 | China | CMIP5 | GISS-E2-R | - | RCP2.6, RCP4.5, RCP6.0, RCP8.5 | Morphing | EnergyPlus | https://doi.org/10.1016/j.buildenv.2021.107663 | |
Nguyena2021 | Southeast Asia | CMIP5 | 14 different | - | RCP4.5, RCP8.5 | WeatherShift™ | EnergyPlus | https://doi.org/10.1016/j.jobe.2020.102089 | |
Tsoka2021 | Greece | CMIP5 | HadGEM2 | RegCM4 | RCP4.5 | Meteonorm | EnergyPlus | https://doi.org/10.3390/en14185799 | |
Farahani2021 | Finland | CMIP5 | 28 different | - | RCP 4.5 | Statistical | IDA ICE | https://doi.org/10.3390/app11093972 | |
Tootkaboni2021 | Rome | CORDEX, CMIP5 | MPI-ESM-LR | REMO2015 | RCP8.5 | CCWorldWeatherGen, RCM, WeatherShift, Meteonorm | EnergyPlus | https://doi.org/10.3390/cli9020037 | |
Yang2021 | Europe | CORDEX, CMIP5 | 5 different | RCA4 | RCP2.6, RCP4.5, RCP8.5 | RCM | Matlab/Simulink | https://doi.org/10.1088/1742-6596/2069/1/012069 | |
Tootkaboni2021a | Italy | CMIP5 | 14 different | - | RCP4.5, RCP8.5 | WeatherShift™ | EnergyPlus | https://doi.org/10.1016/j.egyr.2021.04.012 | |
BravoDias2020 | Iberia | CMIP3, CMIP5 | HadCM3 | WRF | A2 | CCWorldWeatherGen, Morphing | EnergyPlus | https://doi.org/10.1016/j.enbuild.2019.109556 | |
Liu2020 | Hong Kong | CMIP5 | 24 different | - | RCP2.6, RCP4.5, RCP6.0, RCP8.5 | Morphing | EnergyPlus | https://doi.org/10.1016/j.enbuild.2019.109696 | |
Hosseini2020 | Montreal international airport | CMIP5 | GFDL-ESM2 | - | RCP2.6, RCP4.5, RCP6.0, RCP8.5 | Machine Learning | EnergyPlus | https://doi.org/10.1016/j.enbuild.2020.110543 | |
Machard2020 | Paris | CORDEX, CMIP5 | 6 different | 11 different GCM-RCM combinations | RCP4.5, RCP8.5 | RCM | EnergyPlus | https://doi.org/10.3390/en13133424 | |
Ciancio2020 | Europe | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.1016/j.scs.2020.102213 | |
Rodriguez2020 | Spain | CMIP3 | HadCM3 | - | A1F1, A2, B1, B2 | Weather Morph | EnergyPlus | https://doi.org/10.3390/en13236188 | |
Mangan2020 | Turkey | CMIP3 | - | - | A2 | Meteonorm | EnergyPlus | https://doi.org/10.1080/23311916.2020.1714112 | |
Picard2020 | North America | CMIP3,CMIP5 | 1 and 14 different | - | A2, RCP4.5, RCP8.5 | CCWorldWeatherGen, WeatherShift | EnergyPlus | https://doi.org/10.1016/j.enbuild.2020.110251 | |
Rodrigues2020 | Mediterranean | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.1016/j.apenergy.2019.114110 | |
Bamdad2020 | Australia | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.1016/j.enbuild.2020.110610 | |
Farah2019 | Australia | CMIP5 | - | - | RCP4.5 | Time series analysis | TRNSYS | https://doi.org/10.1016/j.enbuild.2018.11.045 | |
Dino2019 | Turkey | CMIP5 | 14 different | - | RCP8.5 | WeatherShift | EnergyPlus | https://doi.org/10.1016/j.renene.2019.03.150 | |
Rouault2019 | Chile | CMIP5 | MIROC-ESM,IPSL-CM5A,CCSM4 | - | RCP4.5, RCP8.5 | Meteonorm | ISO 13790:2008 | https://doi.org/10.3390/su11247068 | |
Nematchoua2019 | India Ocean | CMIP3 | 18 different | - | A2, A1B, B1 | Meteonorm | EnergyPlus | https://doi.org/10.1016/j.scs.2018.10.031 | |
Moazami2019 | Geneva | CORDEX, CMIP5, CMIP3 | 4 different | RCA4 | A2, RCP4.5, RCP8.5 | CCWorldWeatherGen, WeatherShift™, Meteonorm, RCM | EnergyPlus | https://doi.org/10.1016/j.apenergy.2019.01.085 | |
Silvero2019 | Paraguay | CORDEX, CMIP5 | ECMWF-ERAINT, HadGEM2-ES | RCA4 | RCP4.5, RCP8.5 | RCM, Statistical | EnergyPlus | https://doi.org/10.1007/s12273-019-0532-6 | |
Troup2019 | USA | CMIP5 | 14 different | - | RCP4.5, RCP8.5 | WeatherShift™ | EnergyPlus | https://doi.org/10.1016/j.apenergy.2019.113821 | |
Flores-Larsen2019 | Argentina | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.1016/j.enbuild.2018.12.015 | |
Dodoo2019 | Ghana | CMIP3 | - | - | A1B | Meteonorm | IDA ICE | https://doi.org/10.3390/buildings9100215 | |
Huang2019 | Taiwan | CMIP5 | NorESM1-M | - | RCP2.6, RCP4.5, RCP8.5 | Morphing | EnergyPlus | https://doi.org/10.1051/e3sconf/201911106056 | |
Zhai2019 | USA | CMIP5 | CCSM4, FIO-ESMv1.0, HadGEM2-ES | - | RCP2.6, RCP4.5, RCP6.0, RCP8.5 | Morphing | EnergyPlus | https://doi.org/10.1016/j.scs.2018.10.043 | |
Baniassadi2019 | USA | CMIP5 | CESM1 | WRF | RCP 8.5 | RCM | EnergyPlus | https://doi.org/10.1088/1748-9326/ab28ba | |
Pouriya2019 | Toronto | CMIP3, CMIP5 | HadCM3 | HRM3 | A2, RCP8.5 | CCWorldWeatherGen, RCM, WeatherShift™ | NaN | https://doi.org/10.1088/1757-899X/609/7/072037 | |
Zheng2019 | USA | CMIP3 | HadCM3 | - | A1F1, A2 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.1016/j.energy.2019.04.052 | |
Triana2018 | Brazil | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.1016/j.enbuild.2017.11.003 | |
Cellura2018 | Europe | CMIP5 | 24 different | - | RCP2.6, RCP4.5, RCP6.0, RCP8.5 | Morphing | TRNSYS | https://doi.org/10.1016/j.esd.2018.05.001 | |
Perez-Andreu2018 | Valencia | CMIP5 | CNRM-CM5, MPI-ESM-LR | - | RCP8.5 | Morphing | TRNSYS | https://doi.org/10.1016/j.energy.2018.09.015 | |
Hosseini2018 | Montreal | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.1016/j.jobe.2018.02.001 | |
Suarez2018 | Córdoba | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.3390/su10082914 | |
Vasaturo2018 | Netherlands | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.1007/s12273-018-0470-8 | |
Andric2017 | Europe and Canada | CMIP3 | HadCM3 | - | low, med, high | CCWorldWeatherGen | Matlab/Simulink | https://doi.org/10.1016/j.enbuild.2017.05.047 | |
Shen2017 | USA | CMIP3 | HadCM3 | - | A1F1, A2 | Morphing | EnergyPlus | https://doi.org/10.1016/j.enbuild.2016.09.028 | |
Lim2017 | Asia | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.3390/su9112039 | |
Pierangioli2017 | Firenze | CORDEX, CMIP5 | - | COSMO-CLM | RCP8.5 | Morphing | EnergyPlus | https://doi.org/10.1007/s12273-016-0346-8 | |
Sabunas2017 | Lithuania | CMIP5 | 5 different | - | RCP2.6, RCP8.5 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.1016/j.egypro.2017.09.020 | |
Filippin2017 | Argentina | CMIP5 | MRI-CGCM3 | - | RCP4.5 | - | SIMEDIF | https://doi.org/10.1016/j.renene.2016.09.064 | |
Hamdy2017 | Netherlands | CMIP3 | 5 different | 8 different | KNMI'06 G+, KNMI'06 W+ | Hybrid | IDA ICE | https://doi.org/10.1016/j.buildenv.2017.06.031 | |
Palme2017 | Ecuador | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | TRNSYS | https://doi.org/10.1007/978-3-319-30746-6_31 | |
Wang2017 | USA | CMIP5, CMIP3 | CESM1(CAM5), HadCM3 | - | RCP2.6, RCP4.5, RCP8.5, A2 | CCWorldWeatherGen, Morphing | EnergyPlus | https://doi.org/10.1016/j.enbuild.2017.01.007 | |
Erba2017 | Milano | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.1016/j.egypro.2017.09.561 | |
Nik2017 | Sweden | CMIP3 | CNRM-CM3, ECHAM5 | RCA3 | A1B | RCM | Matlab/Simulink | https://doi.org/10.1016/j.egypro.2017.09.686 | |
Huang2016 | Taipei | CMIP3 | MIROC3.2-M | - | A2, A1B, B1 | Morphing | EnergyPlus | https://doi.org/10.1016/j.apenergy.2015.11.008 | |
Waddicor2016 | Turin city | CMIP3 | - | - | A2, B1 | Morphing | IDA ICE | https://doi.org/10.1016/j.buildenv.2016.03.003 | |
Dodoo2016 | Växjö | CMIP5 | HadGEM2 | - | RCP4.5, RCP8.5 | Morphing | VIP-Energy | https://doi.org/10.1016/j.energy.2015.12.086 | |
Pagliano2016 | Italy | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.1016/j.enbuild.2016.05.092 | |
Huang2016 | USA | CMIP3 | 15 different | - | A2, A1B, B1 | Morphing | EnergyPlus | https://doi.org/10.1016/j.energy.2016.05.118 | |
Nik2016 | Sweden | CMIP3 | 5 different | RCA3 | A1B3 | RCM | Matlab/Simulink | https://doi.org/10.1016/j.enbuild.2016.03.044 | |
Khalfan2016 | Qatar | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | IESVE | https://doi.org/10.3390/su8020139 | |
Arima2016 | Tokyo | CMIP5 | MIROC4h | WRF | RCP4.5 | RCM | TRNSYS | https://doi.org/10.1016/j.enbuild.2015.08.019 | |
Invidiata2016 | Brasilian cities | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.1016/j.enbuild.2016.07.067 | |
Rubio-Bellido2016 | Chilean cities | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | Excel VBA | https://doi.org/10.1016/j.energy.2016.08.021 | |
Shibuya2016 | Japan | CMIP3 | MRI-CGCM2 | RCM20 | A2 | RCM | TAS | https://doi.org/10.1016/j.enbuild.2016.02.023 | |
Zhu2016 | Shanghai | CMIP5 | HadGEM2-CC | - | RCP4.5 | Morphing | EnergyPlus | https://doi.org/10.1016/j.enbuild.2015.12.020 | |
Karimpour2015 | Adelaide | CMIP3 | CSIRO-Mk3.0 | - | A1B, B1 | Morphing | AccuRate | https://doi.org/10.1016/j.enbuild.2014.10.064 | |
Jylha2015 | Finland | CMIP3 | 19 different | - | A2, A1B, B1 | Morphing | IDA ICE | https://doi.org/10.1016/j.dib.2015.04.026 | |
Kikumoto2015 | Japan | CMIP5 | MIROC4h | WRF | RCP4.5 | RCM | TRNSYS | https://doi.org/10.1016/j.scs.2014.08.007 | |
Wang2014 | US cities | CMIP3 | HadCM3 | - | A1F1, A2, B1 | Morphing | EnergyPlus | https://doi.org/10.1016/j.enbuild.2014.07.034 | |
Berger2014 | Wien | CMIP3 | - | REMO-UBA | A1B | RCM | TAS | https://doi.org/10.1016/j.enbuild.2014.03.084 | |
Dirks2015 | USA | CMIP3 | CASCaDe | - | A2 | Statistical | EnergyPlus | https://doi.org/10.1016/j.energy.2014.08.081 | |
Peng2014 | Sheffield | CMIP3 | HadCM3 | - | A2 | CCWeatherGen | EnergyPlus | https://doi.org/10.1109/IGBSG.2014.6835172 | |
Daly2014 | Australia | CMIP3 | HadCM3 | - | A2 | CCWorldWeatherGen | EnergyPlus | https://doi.org/10.1016/j.buildenv.2014.01.008 | |
Lee2013 | England | CMIP3 | HadCM3Q0 | HadRM3Q0 | A1B | RCM | EnergyPlus | https://doi.org/10.1177/0143624412439485 | |
Xiang2013 | China | CMIP3 | MIROC3.2-H | - | A1B, B1 | Statistical | TRNSYS | https://doi.org/10.1007/s11708-013-0261-y | |
Asimakopoulos2012 | Greece | CMIP3 | - | - | A2, B2, A1B | RCM | TRNSYS | https://doi.org/10.1016/j.enbuild.2012.02.043 | |
Eames2012 | England | CMIP3 | HadCM3 | - | low, med, high | Morphing | NaN | https://doi.org/10.1016/j.buildenv.2012.03.006 | |
Ouedraogo2012 | Burkina Faso | CMIP3 | HadCM3 | - | A1, A2, B1, B2 | Statistical | IESVE | https://doi.org/10.1016/j.buildenv.2011.10.003 | |
Wan2012 | China | CMIP3 | MIROC3.2-H | - | A1B, B1 | - | DOE-2 | https://doi.org/10.1016/j.apenergy.2011.11.048 | |
Guan2012 | Australia | CMIP3 | - | - | low, med, high | Statistical | EnergyPlus | https://doi.org/10.1016/j.buildenv.2011.11.013 | |
Chan2011 | Hong Kong | CMIP3 | 6 different | - | A1B, B1 | Morphing | EnergyPlus | https://doi.org/10.1016/j.enbuild.2011.07.003 | |
Wang2010 | Australia | CMIP3 | CSIRO-Mk3.0 | - | A1B, A1F1, A1T | Morphing | AccuRate | https://doi.org/10.1016/j.buildenv.2010.01.022 | |
Jentsch2008 | Southampton | CMIP3 | UKCIP02 | - | med, high | Morphing | TRNSYS | https://doi.org/10.1016/j.enbuild.2008.06.005 | |
Crawley2007 | USA | CMIP3 | HadCM3 | - | A1F1, A2, B1, B2 | - | EnergyPlus | https://doi.org/10.1080/19401490802182079 |
bottom of page